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We investigate the dynamics of models involving deposition and evaporation of dimers, tri-

mers, ..

. k-mers, using analytical methods and numerical simulations. Autocorrelation functions

show power-law decays in time, which are related to broken continuous symmetries in associated
spin—% Hamiltonians. These include the Heisenberg ferromagnet as the first nontrivial example. For
k > 3 the models exhibit strongly nonergodic behavior. The numbers of both partially and fully
jammed subspaces, within which the evolution takes place, increase exponentially with the size of
the system. Evidence of finite-size scaling and universality over k is presented which supports a
phenomenological diffusive picture for the dynamics in many subspaces.

PACS number(s): 02.50.—r, 75.10.Jm, 82.20.Mj, 05.50.4+q

I. INTRODUCTION

The kinetics of processes involving the adsorption of
extended objects is of interest in several physical prob-
lems, ranging from reactions on polymer chains, to
chemisorption on surfaces. Here we introduce a new class
of models which capture fundamental aspects of deposi-
tion and evaporation processes. The basic kinetic steps
are deposition without overlap, and evaporation, possi-
bly after recombination, of k-mers, where k = 1,2, 3, ...
represent monomers, dimers, trimers, etc.

The class includes as special cases the random
monomer deposition model [1] and the random dimer
deposition problem of Flory [2], well known for its
jammed saturation states. It also contains some features
which resemble the Dickman-Burschka [3] and Bretag-
Davis-Kerr-Hurst [4,5] generalizations of the random
monomer problem, and of the monomer filling prob-
lem with nearest-neighbor cooperative effects, and also
dimer-dimer and trimer-trimer (etc.) and other general-
izations of a simplified form of catalysis models [6,7].

The class provides tractable models of nonequilibrium
behavior and complex dynamics. Most of the models
show strongly nonergodic behavior in which evolution
takes place within separated subspaces of the total state
space. The number of both fully and partially jammed
subspaces is, for £k > 3, exponential in the number of
sites of the underlying lattice.

The models are equivalent to an interesting new class
of quantum-spin models whose Hamiltonians provide the
transitions described by the master equation. These spin
models include noninteracting spins and isotropic Heisen-
berg ferromagnets as the two simplest cases. The first
of these cases represents random monomer deposition
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and evaporation, and is special in having no coopera-
tive effects. It is described by a simple rate equation,
and shows exponential decay towards a unique steady
state which is a weighted sum over all configurations.
In the case of dimers, for equal deposition and evapo-
ration rates, the Hamiltonian can be mapped into that
of the isotropic Heisenberg model; for unequal rates, the
Hamiltonian also has staggered fields and parity-breaking
(Dzyaloshinskii-Moriya [8]) terms. An important feature
of the equivalent Hamiltonians for general k-mer prob-
lems (except for monomers) is that they exhibit a con-
tinuous symmetry under spin rotations around the z axis.
These continuous symmetries have, via the Goldstone
theorem [9], important implications for the asymptotic
dynamics.

The models have been investigated by a variety of an-
alytic techniques, exploiting both particle and equivalent
spin formulations. Some conserved quantities are read-
ily identified in the particle picture, which also provides
a natural setting for descriptions of generalized diffusion
and linear response for dimer deposition and evapora-
tion. Within the spin description, generalized spin-wave
and random-walk approaches explain diffusive aspects of
dynamics, while symmetry arguments may be used to
infer the existence of Goldstone excitations and, in spe-
cial cases, to exactly calculate time-dependent correlation
functions. Jammed states may be identified in either pic-
ture, and can be enumerated by recursive techniques.

Many of the properties to be described have been dis-
covered using numerical techniques. Large-scale Monte
Carlo simulations show the long-time power-law tails
characteristic of the correlation functions. The univer-
sality of diffusion behavior in all nontrivial members of
the class of models is seen with large Monte Carlo simu-
lations, and confirmed by small system Monte Carlo sim-
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ulation combined with finite-size scaling analysis. This
latter method provides precise values of dynamic scal-
ing exponents and effective diffusion constants, etc. Ex-
act enumeration algorithms have been used to study the
growth of the number of subspaces with system size, to
demonstrate broken ergodicity, and to estimate the de-
gree of jamming.

Many of the points referred to above have been out-
lined in a recent Letter [10]. The present paper is an
extended account of the work, containing essential detail
necessarily absent from Ref. [10].

The layout of the remainder of this paper is as follows.
Section II describes the model in detail and constructs
the evolution operator in the spin representation. Sec-
tion III A briefly describes the simple random monomer
deposition-evaporation model and its basic properties.
Section III B is an extensive discussion of the much more
interesting dimer model. It begins with the special case
of equal deposition and evaporation rates, which maps
to the isotropic Heisenberg model. The exact correlation
function and Monte Carlo results are described. The gen-
eral “unequal rates” dimer case is next described and,
in particular, Monte Carlo results and random-walk de-
scriptions. Section IIIB continues with the generalized
diffusion equation and linear response description of the
dimer problem concluding with a discussion of the Flory
limit and the effect of single-particle diffusion. Section
IV presents an account of broken ergodicity, local jam-
ming, and diffusive decay in the cases kK > 3 (trimers,
etc.) where numbers of subspaces — both fully jammed
and partially jammed — are shown to be exponential
in site number. A quantitative measure of jamming is
also provided. Monte Carlo evidence for diffusive decay
is presented and interpreted in terms of random walks
of patches of active sites on jammed backgrounds. Sec-
tion V treats in turn conserved quantities, symmetries
and Goldstone bosons, which provide an explanation of
the slow asymptotic kinetics. Section VI provides the evi-
dence for universal k-independent diffusion behavior from
finite-size scaling as well as a calculation of the finite-size
scaling function. Section VII is a concluding summary
and further outlook. Detailed analyses are relegated to
appendixes on (A) coverage in steady state for dimers,
(B) calculation of the autocorrelation function for dimers
with equal rates, (C) recursive evaluation of numbers of
fully jammed states, (D) a random walk of spin flips in
a jammed trimer configuration.

II. THE MODEL AND ITS EVOLUTION
OPERATOR

Let us consider a d-dimensional lattice on which k&
nearest-neighbor sites are selected at random. The basic
process under consideration in this work involves depo-
sition and evaporation of k-mers, where k£ = 1,2,3,...
denotes monomers, dimers, trimers, etc. Deposition at-
tempts occur with rate ¢ at selected locations and are
successful only if k£ adjacent sites are vacant. Addition-
ally, evaporation of k particles at a time occurs at rate
€', provided of course that all the k selected lattice sites
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are indeed already occupied. These microscopic dynami-
cal rules are schematized in Fig.1 for the case of a linear
chain.

It is worthwhile to point out that during this process,
the hard-core character of the particles and the possibil-
ity of evaporation give rise to the reconstruction of k-mer
groups and redistribution of particles. Thus, although
our model contains no explicit particle hopping terms, it
allows for an effective particle diffusion.

Our study is mainly limited to one-dimensional sys-
tems for two reasons. Firstly, fluctuation effects are
strongest in d = 1, and already the case of linear k-mers
on a chain displays a very rich behavior. Secondly, with
modern computer facilities numerical simulations of suf-
ficiently high quality are possible in d = 1; our results
were obtained with k = 2,3,4.

The time dependence of this kinetic model is described,
as usual, by a master equation [11] which governs the
time evolution of the probabilities of finding a certain
particle configuration at time t. The associated time
evolution operator H is expressed in terms of Pauli ma-
trices and thus describes a quantum spin-% problem. In
this work we shall explore the connections between these
two types of problems and show what can be learned in
that way.

Consider a linear chain of Ising spins s; = +1, | =
1,2,..., L. The presence of a particle (vacancy) at site [ is
represented by s; = +1 (—1). Let |s) = |s1,82,...,SL)
denote a particle configuration of the lattice which we
assume to have cyclic boundary conditions, sy+1 = s1.

If P(s,t) denotes the probability of finding a configu-
ration |s) at time ¢t and W(s — s’) represents the rate
or transition probability per unit time at which configu-
ration |s) evolves to |s’), the master equation is

2 Psty=3" [WW — ) P(s',1)

ry

—W(s — s')P(s,t) | . (1)

The basis vectors |s) (diagonal in the | {of}) repre-
sentation, say) are orthonormal and complete, (s|s’) =
bs,s'y s |S)(s| = 1, hence a state with probability
{P(s,t)}s is represented in this space by a vector |P(t))
defined by

|P()) =) P(s,t)|s). (2)
The master equation (1) can now be written as
2 Py =-H1PW), ®)
&’ &
T 1 0JOJO)
10O, |O|O|O|O|O|O| |$1¢1¢10|

FIG. 1. Schematic view of the deposition-evaporation pro-
cess for trimers on a linear chain.
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where the operator H is defined in terms of its matrix
elements, namely,

('|H|s)=-W(s—s) ,

ZW(S—>S

s'#s

s'#s,
(4)
(s|H|s)=

Evidently, through a single elementary deposition-
evaporation process, the state |s) can evolve to |s’) only
if |s) differs from |s’) in a single group of k nearest-
neighbor parallel spins at locations I, +1,...,0 + k-1,
say. The corresponding rates are given by

[ 81y vees 4ty ooy ditk=1y ooy SL)
= | 81y ceey Tiy ooy Tidkm1 w0y » SLy ), W(s— 38 )=c¢
| S15 «ees Tty eees Tibkm1y -es SL)
= |81y ey Ly o ditk=1, oy SL ), W(s— ') =¢.

Therefore the operator H connects |s) with |s’) through
two terms of the form eol+, e 0',"_',_,6_1 +€0; 0 Ok
where o} (0]) is a spin-1 raising (lowering) operator
at site . Consequently, to take into account an arbi-
trary k-mer location and reproduce the matrix elements
of Eq. (4), the nondiagonal part of H should be of the
form

H-Y | S wis—s) | Is)(s]=-

s 8'#s
Qu=€[] o +€¢[]er,

where [] = [[7451

Let us now cons1der the diagonal matrix elements
of Eq.(4). From the above discussion it is clear that
(s|H|s) is proportional to the total number of ways
in which configurations |s) can evolve to different states
|s’) in a single elementary deposition-evaporation pro-
cess. For instance, the total number of successful depo-
sition attempts on state |s) are counted by the operator

Naw =D J[ (1 = ofor), (6)

> Qn,
(5)

namely, the number of k contiguous down spins (vacant
sites). Similarly, the total number of successful evapora-
tion attempts are taken into account by

New=3 "Il ator, (7)

which yields the number of k adjacent up spins (occupied
sites) of state |s) . Therefore we get
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(s|eNgep + € Ny | s). (8)

Z W(s—s')=

8'#s

Recalling Eqgs.(5) and (8) and noting that of =
2 0'1+ o, — 1, we finally conclude that the operator gov-
erning the time evolution of our deposition-evaporation
model should have the form

H=Y (Rn - Qn),

(9)
Ro=c[[s(1-0of)+eJ][3(1+0f).

It is worthwhile to remark that the columns of H sat-
isfy >, (s'|H|s) = 0, as is required by conservation of
probability.

Formal integration of Eq.(3) yields the stochas-
tic evolution operator of our problem Uf(t,t;) =
exp [—H (t —tp) ]

| P(8)) = U(t,t0) | P(to) ) - (10)

Note that H has a non-negative spectrum [11] because
no probability can grow with time. The steady states of
our kinetic model correspond to the ground states with
eigenvalue Ey = 0 of each of the invariant subspaces of
H . Positive eigenvalues E > 0 correspond to eigenstates
decaying with a lifetime 1/E.

In general H connects states only within disconnected
subspaces of the total state space. Many of these sub-
spaces contain only a single state, namely, there are
particular configurations which cannot change or evolve
under the action of H; we will refer to them as fully
“jammed” states. The concept of jamming in our model,
i.e., the impossibility to deposit or evaporate k -mers due
to the absence of k£ contiguous vacant or occupied sites,
can in fact be quantified in terms of a transition proba-
bility current in the steady state, giving rise to the idea
of partially jammed states. It will turn out, that on
“nearly” jammed subspaces an exact solution is possi-
ble. These ideas will be developed in full detail in Secs.
IIT and IV.

In the Ising or particle representation, a set of inde-
pendent constants of motion can be easily identified. As-
suming that the number of sites L in the lattice is a
multiple of k, we can divide the chain into k sublattices
a=1,2, ...,k such that a given site I belongs to sublat-
tice a 1f l =kZ+a where Z is an integer. For any state
|s) define No = >, 0ff 07 |s) as the total occupa-
tion of sublattice av. Clearly the deposition-evaporation
process preserves N, — ANj since at any time the num-
ber of incoming or outgoing particles on each sublattice
is the same (see Fig. 1). Therefore the dynamics con-
serves My — Mg where M, = 2N, — L/k is the corre-
sponding sublattice magnetization. Hence there are k—1
independent quantities of this type. It is worth pointing
out that this family of conservation laws can also be de-
rived on more general grounds by considering the contin-
uous symmetries of the evolution operator H, as will be
discussed in Sec. V. Most of the H -invariant subspaces
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have nonzero values of M, — Mg implying broken trans-
lational invariance or an inhomogeneous distribution of
particles in the corresponding steady state.

It is useful to construct alternative representations of
H. Let us introduce the operators & = "ycrl‘*' + v tor,
which arise from a “pseudorotation” (i.e., rotations with
a pure imaginary argument) of the original spins. It can
be checked out easily that

H=2n:Rn(1—H£z), (11)

provided that v = (e/€ )1/ % . Furthermore, since the
eigenvalues of £ are m; = =1, it is clear that prod-
uct eigenstates of & such that H?:: “m = 1 with
1 < n < L are indeed steady states, from which many
more can be generated by exploiting symmetries of H
(Sec. V). However, they arise from linear combinations
of steady states belonging to each subspace and therefore
do not have a simple interpretation in the o* representa-
tion given so far.

It is also possible to rewrite the time evolution gen-
erator H in terms of k-mer creation and annihilation
operators Af, A

ALEHO’?_, AnEHUf. (12)

Using the spin commutation rules [0;" , oj—] = 6; ;07

and {o}", o] }4+ =1, H adopts the suggestive form

H=Y (A LA, + €A Al — €Al — € An)
- .
= Un. (13)
n

For k = 2 and ¢ = €, the operators U, satisfy the
requirements of a Temperley-Lieb algebra [12] allowing
an exact solution of the dynamical correlation functions.
This case will be analyzed in detail in Appendix B, al-
though from a different approach. Unfortunately, the
more complex and interesting cases only satisfy two of
the three requirements for such an algebra.

III. MONOMERS AND DIMERS: SPIN AND
PARTICLE DESCRIPTIONS

A. Monomers

For the case of monomers (k = 1) the evaporation-
deposition process is very simple. There are no cooper-
ative effects [13], so it can be described by simple rate
equations. For example, the coverage p (average particle
occupation per site) satisfies

dp _ _ o
dt—e(l p) —€p. (14)
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The coverage therefore decays exponentially in time to a
steady state value €¢/(e+¢€’) . There is no jamming in this
case.

In preparation for less trivial examples, it is helpful
to see how the above results arise in the spin descrip-
tion of the monomer case. Here the stochastic evolution
operator takes the following noninteracting form:

H=Z[%e(1——of) + 1€ (1+0f) —eof — oy ]
]

(15)
=S [fe(1-0f) + 3¢ (1+0)] (1-&),
l

where & = (e/€') o +(¢/ /e) o] . Hence for e = ¢’ we have
H =¢€3,(1 —0f). Thus for equal rates of deposition
and evaporation the eigenstates have of = +1. Among
these, there is one state with zero eigenvalue E, namely,
the state with of =1 for all sites /. This corresponds to
the unique steady state |1 )

|¢o>=H%(|T)z+ll>z)- (16)

=1

All other eigenstates have some of equal to —1 and
their eigenvalues are a positive integer multiple of €.
These gaps correspond to the inverse characteristic time
of exponential decay.

For € # €’ it can be seen that corresponding statements
apply with “rotated” spins. From the second form of
H [Eq.(11)] we see that the steady state is a coherent
superposition of spin-up and spin-down, i.e., of particle
and vacancy (at each site ! ), with relative weights €, €',
as already known from the particle picture.

B. Dimers

Cooperative effects occur for all k¥ > 2 (dimers,
trimers, etc.). The simplest case is that of dimers and
has further simplifications for equal deposition and evap-
oration rates. The general dimer Hamiltonian (e # ¢€’)
is obtained by inserting k = 2 in Eq.(9). The result
involves spin-pair-interaction terms. It is easy to see
that the deposition term 3, o;" o}, and the evapora-
tion term ), 0, 0;,; have no effect on the two Néel
states, in which of takes the value (—1)! [or (—1)1+1].
As a consequence the remaining detailed balance terms
in H have no effect on these states. They are “fully
jammed” steady states.

The following spin rotation is suggested:

’rl=Rla'1Rl_1 , Rl=exp(———iglaf), 17

therefore (77, ¥, 77 ) = (of, (=1)' o}, (—1)' 07 ). This
sublattice mapping takes the Hamiltonian to the form
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(7f + 71 — )

“Tid1) - (18)
l

In addition to an isotropic Heisenberg coupling, H con-
tains staggered field and Dzyaloshinskii-Moriya terms [8].
Evidently, H commutes with T? = 3, 77 . In a system
with L sites, 7% runs over (L + 1) values, implying that
‘H splits into as many invariant subspaces. The subspace
with 7 down spins (7, = L — 2r) contains (¥) configu-
rations |C,. ). Using detailed balance, the corresponding
(unnormalized) steady state is seen to be

[42) = eNalG) ¢ No(@ ) (19)
ICr)

where N4(C,), Ng(C,) are the numbers of particles in
sublattices A and B in a particular configuration |C,.) .

The coverage ©¢ in the steady state (Appendix A),
defined as the mean number of occupied sites in the dimer
problem, is given by

90=%<1+<TA);(TB>> (20)

where T =37 4 77, T = > 1 7 - Since the steady
state in each subspace (labeled by the value of T?) is
known explicitly [Eq. (19) ], the corresponding values of
(Ta), (Tp) and ©¢ can be found, for each T%. In par-
ticular, for the subspace 7% = 0 (which includes the
all-empty configuration in the initial dimer problem) the
result (see Appendix A for calculational details) is

Q= —— (21)

1. Dimers, € = €’

For equal deposition and evaporation rates the new
form of dimer Hamiltonian reduces to that for the
isotropic ferromagnetic Heisenberg chain

H:—g;(n-ml—n. (22)

The ground states with all spins 77 up, or all down, cor-
respond to the fully jammed zero energy states discussed
above. More generally, because of the isotropic nature of
the interaction term in H, there are L +1 ground states
(F = 0) with all spins 7; parallel — each a steady state.

‘H is invariant under common rotation of all spins ;.
The operator producing such a rotation about an axis
parallel to an arbitrary unit vector n is T - n where
T = >, 7. So [T,H] = 0, and each component
of T is conserved in the deposition-evaporation process
(k =2, e =¢). As we have seen, H commutes with T
even if the deposition and evaporation rates e and € are
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different. But the commutation with 7% and 7% (and
hence with the total spin 72 = 722 + T¥2 4+ +T%2)is a
special feature of the model with e = €.

A parallel-spin steady state | G )7- with specified value
of T# (i.e., with given number of 7 particles, namely the
particles in the sublattice mapped system) can be ob-
tained by rotating the fully jammed states |G ), with
all L spins up by applying T~ = T% — iT¥ an appropri-
ate number r = (L—T7%)/2 of times. |G )7 - is a sum over
all states of the specified particle number with equal co-
efficients; each such configuration is equally likely in the
steady state.

It is well known that the isotropic ferromagnetic
Heisenberg model has single spin-wave excited states.
For specified T and wave vector q, these are obtained
by applying to | G )r-41 the spin-rotated version of the
qth Fourier component of the spin lowermg operator
T, = L™Y2 3, 77 exp(igl). The spin waves have a
gapless spectrum with excitation energy (i.e., the eigen-
values E of our H) proportional to ¢g? at small wave
vector ¢: E = E; = €(1 — cosq) ~ Dgq? for small q.
This form applies for spin-wave excitations from any of
the parallel-spin steady states, and the spin-wave stiffness
constant D is the same (D = ¢/2) for all such states.

The gapless character of the spin-wave band has im-
portant implications for the asymptotic kinetics for dimer
deposition and evaporation with € = €. It is well known
that the spin-wave contribution to the spin autocorre-
lation function (77(t) 77(0)) — (77 )2 in the all-up-spin
ground state (1% = L) has a diffusive t~1/2 long-time
tail. As a consequence of the full rotational symmetry of
‘H the autocorrelation function in the steady state with
average T particle occupation p = £ (1 + (T?)/L) can
also be calculated exactly. Simple selection rules arising
from this symmetry apply to the matrix elements of 77 in
the basis of eigenstates of H . This simplifies significantly
the calculation of dynamical correlation functions, which
is given in detail in Appendix B for the sake of complete-
ness. The final result turns out to be

o) = % S UmOmO) - ()’

=r (1 fzexm ~Byt)

(23)
=p (1—-p) exp(—2et) Ip(2€t) t7% ¢t — 00,

™
Io(2) = 517_1' / exp (zcosf)df.

This prediction of a diffusive power-law asymptotic
kinetics contrasts with the exponential decay of the
monomer case. The diffusive tail is intuitively surprising
given that the model has no explicit diffusion process,
but as remarked earlier the reconstitution of k-mers on
the surface does result in effective particle diffusion.

Monte Carlo simulations have been used to investigate
this phenomenon. The simulation procedure goes as fol-
lows. Using periodic boundary conditions we choose a
lattice site at random and check out if there are either
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k — 1 consecutive vacant or occupied sites to the right
of the selected site. If the selected site is empty and
its k — 1 contiguous neighbors are also vacant, a k-mer
deposition is attempted with probability €. Similarly, a
k -mer evaporation attempt with probability € is allowed
provided that the corresponding sites are already occu-
pied. If neither deposition nor evaporation is possible,
the selected site remains in its occupation number state.
This microprocess is repeated L times after which the
time is increased by one unit (¢ — ¢ + 1). Therefore the
time is defined proportional to the number of deposition-
evaporation attempts (successful or not).

Starting from an all empty initial configuration (actu-
ally belonging to the least jammed subspace for € = €' ),
we waited a time ¢y to allow the system to reach the sta-
tionary regime. In general o was chosen larger than the
subspace dependent relaxation time of the full system.
Using to as the time origin we measured the autocorrela-
tion function of Eq. (23) in the steady state by averaging
over different histories.

TT T T T T IlTlI T T T ITTTII
01g k=4 (@) 3
= 0.01(" =
© C \\ k=4 = 3]
[ \‘ \\ ]
: \\ \\\3 \\\ e=¢ :
0.001F ‘2% =
—ll \\ l\\l ‘\\1 llll' 1 1 11 l|1l|:
10 100

t (step)

T T T T ||||[ T T T T T TTT
0.1k G
= 1
= i 4

£'/e=0.5
0.01- SN
r slope -1/2 \\ ]
’_ll S 1 111 llll L ] 1 il‘lT—
10 100
t (step)

FIG. 2. Autocorrelation function in the steady state ob-
tained from an empty lattice of L = 1.2 x 10° sites, averaged
over 100 samples for k = 2,3,4 indicating a power-law decay
(~ t~Y2). (a) Results for € = €. The analytic determina-
tion for k = 2 [Eq. (23) in the text] is shown by the dashed
curve. Explicit particle diffusion results in an exponential
decay (dashed curves at the bottom left). (b) Results for
€/e=0.5.
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We used chains of L = 1.2 x 10% sites with periodic
boundary conditions. On general grounds we expect spa-
tial correlations to be insignificant for separations compa-
rable to the linear dimension of the system, hence finite-
size effects can be assumed to be negligible. The averages
were taken over 100 histories using t; = 5000 steps on
each sample. The results for ¢ = ¢’ are shown in Fig.
2(a) along with the more complex cases k = 3 and 4 to
be referred to in the remaining sections. They are consis-
tent with Eq. (23) (dashed line). At long times, the decay
follows a power law (~ t~1/2) | a feature which evidently
also characterizes the decay for K = 3 and 4 as well.

2. Dimers, € # €'

For unequal deposition-evaporation rates, the dimer
spin Hamiltonian takes the general form given in Eq. (18).
Monte Carlo simulations of the autocorrelation function
for this case again exhibit power-law asymptotic decay,
despite the lack of isotropy in the Hamiltonian. This
is shown in Fig. 2(b) for €¢//e = 0.5. This behavior is
rather fully explained in the following subsection, using
an effective diffusion equation in the particle picture, and
in Sec. V using hidden symmetries of the Hamiltonian.

We now give a simple “random-walk” description
which applies (for general €,¢’) to the particular case
(Pa,PB) ~ (1,1), ie., “near” the two fully jammed
states. Suppose |0) denotes the fully jammed state with
all spins up (p = 1) in the sublattice representation.
Then the single-spin-flip state [n) = 7,; |0) evolves as
follows under the action of H [Eq. (18)]:

H|2n)=b(1+a) (|2n+1) — 2|2n)
+|2n-1)),
(24)

H|2n+1)=b(l—-a) (|2n+2) — 2|2n+ 1)
- +l2n)),

where a = (e — €¢') /(e + €') and b= (e +¢€)/2.

These equations for the random walk of the spin
flip have a form consistent with conservation of prob-
ability and with translational invariance on each of
the two sublattices. Hence the substitutions |2n) «
aexp(ig2n), |2n+ 1) x Bexp[ig(2n + 1)] reduce
these equations to the form H |¢) = E,|q). The eigen-
energies and eigenvectors are

E,=2b (1 + \/cos2q + a? sin?q ) s
lg) = Aq10)
EZ exp(ig2n) (ats, + B exp(iq) Tops1) 10),
n

(25)

B _ 2b(l+a)cosg
a E;+2b(1-a)’
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The resulting gapless (“acoustic’) mode has E; ~
Dg?, g — 0 with

4

D = .
€ + ¢

(26)

This is sufficient to give the t~/2 decay for (54, 5%5) ~
(1,1). The procedure also generates another steady state
Ap|0) in addition to the jammed state.

An alternative procedure, leading to equivalent results,
is to find a,, B, and E such that

[H,A]10) = |H, > (onTh + BaTimgy) | 10)

=FEA|0). 27)
Either calculation can be equally easily carried out
with the original (non-sublattice-mapped) Hamiltonian.

8. Dimers: Particle representation

We now interpret the sublattice-mapped Hamiltonian
(18) in terms of a mapped particle-vacancy picture (7% =
+1 for particles or vacancies, respectively). For arbi-
trary site occupations and rates (e, €’), in this particle
representation the deposition-evaporation process can be
viewed as providing currents between the two sublattices
such that

%—T =Ji—11 — Jii+1,
where J; ; is the current from site i to the neighboring
site j (see Fig. 3). These currents are completely deter-
mined because of the known exact steady states:

(28)

Joroie1 = €Pyy (1= Pory1) — € Pogyn (1—Py) s
(29)

Jor—1,20 =€ Py (1 —Pyy) — €poy (1—Poyy) -

Equations (28) and (29) constitute a mean field version
of an exact equation for d(77)/dt, and become exact for
small deviations from the steady states [as in the discus-
sion below, starting from Eq. (30) ].

For € = €’ the sublattice distinction in the particle rep-

~y
Pzn+y

~y
p2n—l

2n,2n+1

~

Pzn+2

~y
p 2n
FIG. 3. Schematic description of particle currents in the
sublattice-mapped representation [Eq. (29) in the text].
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resentation becomes irrelevant and the set of equations
becomes a discrete linear diffusion equation. This can
be used to derive the results already given in Sec. III B
above.

For € # € it is straightforward to consider deviations
from steady states which are uniform on each sublattice

Paiy1 = Pa + 62141(t)
=py + Aexp [ig(2l +1) — Et],
(30)
P = P + 62(t) = pp + B exp [ig2l — Et].

Inserting into Egs. (28) and (29) and eliminating B/A
yields (E — a)(E — 8) = a B cos? ¢ with

a=2[c—pa(e—¢)] |
B=2[¢ + ppe—¢)],

(31)
afB=4e€.
For small ¢, it follows that E — D q? where
aff 2+ee RyRp (32)

a+ 8 Ras + Rp
where R, = p, (1 — p,). This provides the diffu-
sive behavior and associated diffusion constant for ar-
bitrary py, P, €, € satisfying (31). For the special case
(Pa» PB) — (1,1) the result is that already derived in
Sec. IIIB2. We will make use of Eq. (32) to test the reli-
ability of finite-size scaling methods to be introduced in
Sec. VI, by measuring the diffusion velocity D for various
ﬁAa ﬁB’ € 6’ .

An alternative method of deriving the diffusion con-
stant is by a linear response method. Here a small field
€ is applied to induce a particle current J

6/
- 'XPB(l“ﬁA) )

T =eXpy(1—pp
A=exp (BE/2),
(33)

— oc&E=Pepu(1—pg)E, € = 0.

We may then use the Einstein relation D = o/x, where
X is the compressibility

(Ra+Rp) .

[STRe

x=2 3 (ning) = (ma) (ny)) =
L)

(34)

The result (32) again follows.
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4. Flory limit

The process of dimer deposition introduced by Flory [2]
is the prototype model for random sequential adsorption
(RSA). It is thus interesting to see how Flory’s results
appear in our generalized model in the limit that the
evaporation rate € approaches zero.

The Flory model exhibits a very large number of
jammed steady states, none of which have two or more
contiguous vacant sites; as ¢ — oo, the system gets stuck
in one of these jammed configurations. If the initial state
is an empty lattice, the mean coverage has a saturation
value O = (1 — e~2). This asymptotic result is very
different from the value ©¢y = 1 obtained on taking the
limit ¢ — 0 in Eq. (21). Evidently, the limits ¢ — 0 and
t — 0 do not commute.

The reason for this is not hard to see. A nonzero but
small value of the evaporation rate €’ is associated with a
large crossover time t* ~ 1/¢’. For t < t*, there is a very
small probability of an evaporation attempt at any given
site, and the kinetics is dominated by deposition. Thus,
Flory-like jammed states are approached exponentially
in time [14] with rate € for 1/e < t < t*.

On the other hand, over much longer time scales,
t > t*, the state of the system is quite different: it
approaches the steady state described by Eq. (19). Cor-
respondingly, the coverage approaches a value close to
unity, as in Eq. (21). It is only on these time scales that
the diffusion constant D of Eq. (32) describes the dynam-
ical behavior.

5. Effect of single-particle diffusion

A striking effect occurs if the model is generalized to
include explicit particle diffusion on the lattice, through
a nearest-neighbor particle hopping term. This adds to
the Heisenberg Hamiltonian (9) additional pair terms in-
volving al+ oy .

In terms of the sublattice-mapped 7-spin representa-
tion, the result is to add terms which break rotational
invariance in the XY plane. In the case of equal deposi-
tion and evaporation rates € = ¢ and equal forward and
backward hopping rate h, the corresponding evolution
operator results in the XY Z Hamiltonian

1
'H=—§ Z [(e+ h)7Tf 78 + (e — h) T/ 78,

1
+(e—h)mf7fy — (e + h)] . (35)

As a result, a gap A develops in the spin-wave spec-
trum and the autocorrelation function becomes propor-
tional to exp( —At) at long times. In addition, the lack
of isotropy in the XY plane removes the hidden continu-
ous symmetry to be referred to in Sec. V. So, explicit par-
ticle diffusion instead of augmenting the diffusive power-
law tail converts it to exponential decay. This behavior is
again confirmed by Monte Carlo simulations [Fig. 2(a)].
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IV. &k > 3: BROKEN ERGODICITY, PARTIAL
JAMMING, AND DIFFUSIVE DECAY

A. Number of subspaces

The case of trimers is typical of k-mers for £ > 3
and differs from the dimer case in a basic respect: the
full phase space of 2~ Ising (site occupation) configura-
tions splits into a very large number I(k, L) of invariant
subspaces which are not connected to each other by the
dynamics induced by the stochastic operator. For k > 3,
the number I(k, L) grows exponentially with L (see Fig.
4) in contrast to I(2, L) which increases as L+1 for even
L.

The exponential growth can be established as follows.
Let I;(k,L) be the number of invariant subspaces of size
1 and write I(k,L) = I (k,L) + I*(k,L). Here I*(k, L)
is the number of subspaces with nontrivial dynamics,
each of which has more than one configuration in it. We
may estimate I;(k,L) on noting that each subspace of
size 1 corresponds to a completely jammed configura-
tion, one which is left invariant by the stochastic evolu-
tion operator. Each such configuration is characterized
by having no more than k — 1 successive parallel spins
anywhere along the lattice. The number I;(k, L) of con-
figurations may be calculated using a recurrence method,
sketched in Appendix C. For an open chain of length L,
the answer is

Ii(k, L) =2 Fi(L), (36)

where Fy(L) is a generalized Fibonacci number defined
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FIG. 4. Number of subspaces of the evolution operator vs
system size for (a) k = 3 and (b) k = 4. The squares and
triangles denote partially and fully jammed number of sub-
spaces, respectively, for periodic boundary conditions. Both
indicate an exponential growth. The circles are the analytic
determination of fully jammed subspaces for open boundary
conditions. Solid lines are guides to the eye.
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by the recursion (C9)—(C11) in Appendix C. The asymp-
totic result is

Li(k,L) ~ AL, (37)
where )\ is the largest root of A* = 2Ak~1 — 1. For
k = 3, X is the golden mean ~ 1.618, while for k =
4, A ~ 1.839. As we see from Fig. 4, the total number of
subspaces I(k,L) too grows as AL .

The stochastic operator has a nontrivial action in each
of the I*(k,L) dynamically nontrivial invariant sub-
spaces. We have investigated the splitting of H into
disconnected sub-blocks in the Ising or particle repre-
sentation on rings of sizes 3 < L < 21. The idea of
the underlying exact enumeration algorithm can be im-
plemented easily. We choose an arbitrary initial state
from the 2 possible configurations and apply H to it
keeping proper track of the newly generated configura-
tions (if any) until exhausting the subspace to which this
state belongs. Repeating this operation with successive
new states that are not already included in the previously
generated subspaces, we obtain finally a complete classi-
fication of configurations according to their correspond-
ing sub-blocks. The number of total invariant subspaces
and the particular configurations contained on them is of
course independent of € and € provided that both rates
have nonzero values.

It turns out that I*(k, L) too grows exponentially with
L (see Fig. 4). Writing I*(k, L) ~ u* and using periodic
chains with L a multiple of k to avoid spurious finite-size
effects, we find that successive ratios I'*(k, L+k)/I*(k, L)
increase with L, making a reliable numerical estimate of
p difficult. However, extrapolations involving finite-size
correction terms are helpful at least to determine lower
bounds. Our data suggest 4 > 1.4 fork=3 and > 1.6
for k = 4. Recent work [15] employing free-boundary
conditions shows that it is possible to set up and solve
recursions for I*(k, L), and thus deduce u = \.

The behavior of I (k, L) and I*(k,L) implies that the
full space is divided into an exponentially large num-
ber of subspaces, each of which is dynamically decou-
pled from the others. Our model is thus strongly non-
ergodic, making it quite unusual. Further, since each
invariant subspace typically contains very many config-
urations, almost all of the full set of configurations be-
long to the I*(k, L) partially jammed subspaces. (The
remainder, the jammed configurations, constitute a frac-
tion ~ (A/2)F, which vanish rapidly as L — c0.)

Let us take the initial state to be a single specified con-
figuration |{of}) in the Ising basis. It belongs to a par-
ticular invariant subspace, call it A. The time evolution
within this subspace is governed by H,, i.e., the sub-
block of H corresponding to that subspace. Since Hy is
a stochastic matrix, it follows from the conservation of
probability that Hy (1,1, ...,1) is a left eigenvector of
Hp with eigenvalue 0. The corresponding right eigen-
vector specifies the unique steady state, which we denote
by |A,0). In the case € = €’ the stochastic matrix Hx
is symmetric and the steady state (right eigenvector) is
(1,1, ...,1) as well. Every microscopic configuration is
weighted equally in the steady state. It is possible to
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write down the steady state in the case € # ¢/ as well,
noting that detailed balance implies that configurations
C and C’ both in A, which differ from each other only
by a single deposition, have relative weights in the ratio
e/€ .

/Since each invariant subspace A has a unique steady
state |A,0) the total degeneracy of steady states of H
is I(k,L). Hence it is possible to form other steady
states from linear combinations over |A,0) . For instance,
steady states described at the beginning of Sec. VB are
of this type.

B. Jamming

We have seen that the steady states |A,0) are either
completely jammed configurations or a linear combina-
tion of evolving configurations. Even a steady state of
the latter sort is partially jammed in a sense that can be
made quantitative, as discussed below.

The dynamics in steady state involves a succession of
stochastic transitions between states |s) = [{o7}) in A.
The mean rate per site of such transitions is

1
J(A) =7 <A,0 Xn:Rn] A,o>
1
=z 3D R(s)W(s— s, (38)
SEA s'#s
where Py(s) are the equilibrium probabilities. Hence

J(A) is a quantitative measure of the lack of jamming in
that steady state. For instance, for completely jammed
steady states, J = 0. The steady state |Ag,0) result-
ing from an all-empty initial configuration has the least
jamming of all.

Using the exact enumeration algorithm described
above we can characterize the exact steady state in all
subspaces for € = €’ since the rows of H add up to zero
and therefore Py(s) = 1/Nj , where N is the total num-
ber of configurations in the A subspace.

We computed J(A) in various subspaces on finite sys-
tems with 3 < L < 21. The corresponding “currents” are
largest in the E subspace, which includes the all-empty
configuration. The result is Jg ~ 0.35 for ¥k = 3 and
JEg =~ 0.29 for k = 4, both indicating a fairly large degree
of jamming.

Monte Carlo simulations again confirm a diffusive de-
cay of autocorrelation functions in this particular transla-
tionally invariant subspace, both for equal and different
deposition-evaporation rates, as is shown in Figs. 2(a)
and 2(b), respectively. Moreover, the broken ergodicity
and the lack of translational invariance of most subspaces
does not affect the diffusive behavior observed so far. The
results obtained in the trimer case on one such subspace
can be seen in Fig. 5. Here the starting configuration is
a Néel state with every sixth spin reversed.
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FIG. 5. Autocorrelation function for deposition and evap-
oration of trimers in the steady state reached from an initial
Néel configuration with every sixth spin reversed. The av-
erages were taken over 100 samples for L = 1.2 x 10° and
€'/e = 0.5, 1 both indicating a power-law decay (~ t~1/2).

C. Diffusive decays in nearly jammed configurations

The diffusive decay seen in the trimer system can
be discussed for the case of almost jammed states by
random-walk arguments, like those in Sec. IIIB for the
dimer system.

The first example considered is the random walk of
simple spin flips on the jammed periodic state |¢) =
(TTHE3 =11111) The state |41) = o3 [9)
involves a cluster of five up spins on which the trimer
Hamiltonian H can act. It is found that (H + 3€)|¢;)
produces three new states

|9 ) =05_205_1 %),
[97) =051 0541 |¥), (39)
]’lﬂ?) =‘73_l+10'3_l+2|¢>'
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|4!) and |42) involve a cluster of four down spins, and
|%?%) a cluster of three down spins. The trimer Hamil-
tonian H again has nontrivial action on these states,
namely,

(H+3€¢) o) =€ (|9f) + 197) +14)),
(H +2€)|9) =€ (|t1-1 + %)),
(40)
(H + €)|9f) =€),
(H +26)|9)=€(Itn) + [Y141)) -

After eliminating the new states we have

[(H +€) (H + 2€) (H + 3€') — e€ (3H +4€)] |¥)

=ec' (H+e) (|i—1) + |Yi41)) . (41)

This equation describes a generalized random walk of
the original spin flip state. Eigensolutions of the form
o exp (igl) yield the secular equation for the eigenenergy
E

E® + 3E%(e+¢€) + E [2¢® + 2e€’ (3 — cosq) |
+2¢e2¢ (1 — cosq) = 0. (42)

Of the three resulting branches, the lowest is gapless hav-
ing E(q) going to zero as ¢ — 0 like E ~ Dg¢? with
(diffusion) constant D

€€
T 4e + 2¢ (43)

Taking into account Eq. (39) and considering the secular
equation [H, Ag] |¢) = E(q) Ag|%¢) it is straightfor-
ward to show that the eigenstate is A |1 ) where

) € q . _ _
Ag = exp(igl) |oF + TeT B cos o [ exp (—ig/2) 031_5 05,
l

6/

+ exp (i9/2) 03,11 0540] + m%}_l@m . (44)

The form of this creation operator is consistent with
more general considerations to be given in Sec. V. Also
[Ao, H] |9) =0,s0 Ag creates a new steady state from
the fully jammed state |9 ).

A second example is the random walk of spin flips
on the fully jammed antiferromagnetic periodic state
lp) = (11)%/2 =111 .... In Appendix D it is shown
that repeated application of the Hamiltonian H to the
initial state o; | @) generates a random walk of a group
of three up or three down spins on the antiferromagnetic

[

background. The equation yielding the eigenenergies is
shown to be

E,f—2Eq(e+e')+4ee’sin2q=_0. (45)

The gapless “acoustic” branch yields diffusive behavior
E — Dg? for small q with

2¢€
D=5 (46)
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There is a remarkable similarity of both D and E; to
the quantities occurring for the dimer case k = 2, € # €’
with the same antiferromagnetic fully jammed state.

Walks of several defects on more general fully jammed

e O O O O o e ©o e
e O O e O ©O o O e
e O O e © O O o e

0

FIG. 6. (a) A particular trimer evolution of unjammed
regions through an antiferromagnetic jammed background,
displaying a random-walk behavior; only updated spins are
shown. (b) A schematic view of active trimers (denoted by
rectangles) evolving through deposition-evaporation processes
in an antiferromagnetic background. (c) A particular trimer
history starting from a fully jammed random state contain-
ing at most three parallel spins, exhibiting a split into many
walkers.
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states can be considered in a similar way. For instance,
Fig. 6(a) displays a particular evolution of five walk-
ers embedded in a jammed antiferromagnetic background
showing that the concept of “walker” is well defined in
this case. Figure 6(b) shows schematically the corre-
sponding trimer random walk on a microprocess level
where again the walker is well defined. However, it is in-
structive to verify that this is not always the case as can
be seen in Fig. 6(c) which displays a particular history of
an initial random configuration containing at most three
nearest-neighbor parallel spins. Here the “single” active
patch may eventually split into many other walkers. Ad-
ditionally, it may not be correct to assume that even in
a finite walker density regime, collisions and interactions
among walkers have no important consequences at long
times, other than to modify the actual value of the dif-
fusion constant.

Also, a simple particle description like that in Sec.
IIIB3 for the dimer case does not seem possible for
k = 3. However, symmetry properties of the k-mer
Hamiltonian, which will be discussed in Sec. V, provide
a partial explanation of the diffusive behavior seen gen-
erally for trimers.

V. CONSERVED QUANTITIES, SYMMETRIES,
AND GOLDSTONE BOSONS

It is well known that conserved quantities, continu-
ous symmetries, and slow kinetics are closely interelated.
The long wavelength fluctuations of a macroscopic con-
served quantity show hydrodynamic or diffusive dynamic
behavior; this can cross over to critical behavior if the ve-
locity or diffusion constant vanishes.

A continuous symmetry implies a conserved quantity
since the generator of the symmetry commutes with the
Hamiltonian. When a ground state breaks such a con-
tinuous symmetry, a gapless band of Goldstone bosons is
implied.

These concepts can be used to provide an understand-
ing of the slow asymptotic kinetics seen in the deposition-
evaporation models. The diffusive decay seen for dimers
with equal rates (¢ = €’) has already been interpreted
in terms of spin waves (Sec. III): these are the Gold-
stone bosons implied by the full rotation symmetry of the
isotropic Heisenberg Hamiltonian (19). Furthermore, the
conserved quantities can help to categorize the invariant
subspaces described in Sec. VI.

These ideas are developed in Secs. VA-V C, which
treat in turn, conserved quantities, symmetries, and
Goldstone bosons.

A. Conserved quantities

For the case of monomers (k = 1) the Hamiltonian
(15) is a sum of single-spin terms, so each of these is a
constant of motion. These constants completely describe
the breakup into invariant subspaces but they are not
macroscopic quantities, so no slow dynamics is implied



47 DIFFUSIVE DYNAMICS OF DEPOSITION-EVAPORATION . . .

and of course the decay is exponential in time.

For dimers with € = ¢, each component of T =Y, 7;
is a constant of motion. These components generate arbi-
trary rotations of all spins along the corresponding axes,
and the conservation law is related to the full rotation
symmetry of the Hamiltonian. The spin-wave Goldstone
modes and the resulting diffusive decay follow from the
breaking of this symmetry by the parallel-spin ground
states.

The situation is more complicated for € # ¢ or for
k > 2. However, it can be shown that for arbitrary & and
€'/e the most general local constant of motion involving
only spin z components is of the form

Q=Y ciof (47)
l

(excluding a trivial additive constant).

Further, by considering [H, Q] = 0, it can be shown
that

I+k—1

> C.=0Vi. (48)
n=l

This linear equation is easy to solve and results in @
being an arbitrary linear combination of @1, Q2, ..., Qkx—1
where

Q- =Z Mof, A\ =exp(i2nr/k). (49)
1

where r = 1,2,..., kK — 1 so that A, runs over the non-
trivial roots of unity. Equivalently, @ can be written as
an arbitrary linear combination of the ¥ — 1 indepen-
dent conserved quantities already identified in Sec. II,
ie, Moy — Mg, a=1,2, ..,k—1, where M, is the z
component of the total spin on sublattice . For the case
k = 2, € = € the resulting single conserved quantity is
T* = ), 77 and this is related to the symmetry of the
isotropic Heisenberg Hamiltonian (19) with respect to ro-
tations around the z axis. It will be shown in Secs. VB
and V C that the conserved quantities M, — M} arise
from a continuous symmetry of the Hamiltonian for gen-
eral k, €/ /e and that this gives a partial understanding
of the slow kinetics seen in general.

The conserved quantities discussed above appear to be
the only ones involving local combinations of spin oper-
ators for k > 3. They are, for any k, the only ones
diagonal in the Ising basis. An initial state which is a
single specified configuration in the Ising basis is labeled
by particular values of each of these conserved quantities
which do not change under the time evolution produced
by the Hamiltonian.

B. Symmetries

Under a rotation by an angle ¢; around the spin z
axis, the transverse components of spin o; transform ac-
cording to
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of — of cosp — o} singy,
(50)
o} — of sing; + o} cosyy .
Equivalently
of wof exp (Lign). (51)

Such a rotation leaves [] o;f, [[ o; and all other
terms in the Hamiltonian (9) unchanged provided that

k
> or=0 Vi (52)
r=1

This condition requires a common rotation angle ¢; =
¢a , for all spins ! on sublattice o with the constraint

(53)

This condition permits k — 1 independent arbitrary ro-
tation angles. So for k > 2 the Hamiltonian is invariant
under the continuous z -rotation symmetry expressed by
the above equations. For k = 2 the sublattice-mapped
version of condition (53) is the common z rotation of all
spins.

‘We next show how the k—1 conserved quantities iden-
tified in Sec. V A result from this continuous symmetry.

The rotations described above are generated by the
operator

k
Q=) pa M, (54)
a=1
where MZ = Y, 0f,,, and the angles @, satisfy
Eq. (53).

The invariance of H = exp(iQ/2) H exp(—iQ/2) im-
plies [H, Q] = 0. Q is therefore a conserved quantity.
Furthermore, it involves kK — 1 independent conserved
quantities since k—1 of the angles are independent, hence

k-1 k-1
Q=Y vaMi + M (—Zwa)
a=1 [

k-1
=Z<pa(M;_le)' (35)
a=1

The k — 1 angles involved in the last sum are now inde-
pendent. We thus recover the k —1 conserved quantities
M?Z — M} as a consequence of the continuous symmetry.
In the next subsection we will discuss how broken sym-
metries, Goldstone bosons, and slow kinetics arise from
this continuous symmetry.

It should be noted that the above account of symme-
tries is not complete. For example, the full rotation sym-
metry of the sublattice-mapped Hamiltonian (19) for the
case k = 2, ¢ = ¢ arises from the continuous symme-
try discussed above together with an additional property,
namely, conservation of probability — this latter property
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is reflected in the vanishing of each column sum in the
matrix representation of H .

C. Broken symmetries, Goldstone bosons,
and slow kinetics

The continuous z -rotation symmetry introduced above
in Sec. VB is not broken by the fully jammed steady
states, since they are eigenstates of each of .

A class of steady states which break the symmetry can
be constructed from the form of the alternative form
of the Hamiltonian given in Sec. II, Eq.(11). These
steady states are product eigenstates of § with eigen-
values m = +1 such that m; = m, for [ on sublattice
o with H -1 Mo =1.

These states are linear combinations of all the steady
states |A,0) already introduced in Sec. IV. Applying
the z -rotation symmetry (51)—(53) to them produces new
steady states. Since they break this continuous symmetry
the existence of Goldstone bosons is implied. We now
develop these ideas in a little more detail.

If |0) denotes the state with all spins up, the steady
states formed from product eigenstates of § = ’ya +

k—1 L/k
W{f}):/ / <]:[1d§9a> F(o1y mee-1) [ [

This form is appropriate for a chain of L sites with L an
integer multiple of k.

If the arbitrary weighting function is chosen to pick out
arbitrary powers p, of o = exp(—ipy ), a =1, ...k—1,
a steady state with a definite difference p, of occupations
of ath and kth sublattices can be produced. It is the co-

efficient of Hﬁ;ﬁ z8= in exp (A{za}) | (1T -+ DE/*),
where
k— k—1
=Y nos s ()5
a=1 =1
J:i: = Mg :tl S:i:
(59)
Sy = Z Oklda:
1
and | (11 --- |)I/*) is the state with every kth spin

down in a set of up spins. For k¥ > 2 the total number

-1

a=1
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vy lo7, v=(e/€)/* are

L
I€)=(72:W l:[ (1 + %ial‘) |0).  (56)

Applying the z -rotation generator Q of Eq. (47) to these
states produces the new steady states (omitting the nor-
malization prefactor)

e (i9) 16 =1] [exp(m/z)

l
m . -
+—7—' exp (—ipi/2) oy ||0),

(57)

where m; and ¢; satisfy the conditions given above and
in (53).

Still more general steady states can be produced by
exploiting the k—1 independent angles among the {¢,} .
The most general steady state is the linear combination
with an arbitrary weight function f, namely,

(exp pa/2) + —eXP(_“Pa/z) Ukl+a>

x (exp (1©/2) +% exp (—1©/2) ‘71:(1+1)):| [0),

(58)

of steady states produced by this procedure is of order
L¥=1 | of which only 2k are fully jammed. Clearly this
constitutes a vanishingly small fraction of all the I(k, L)
steady states (see Sec. IV).

In the expansion

exp A = Z Z (H mg«;) é(pl,...,Pk—l), (60)

Pk—1 a=1

the operators 6 (@1, Pe-1) generate from
[(11 -+ [)E/*) the steady states described above. They
can also be shown to act as raising operators for the con-
served quantities @, given in Sec. V A. Since they de-
rive from a continuous symmetry of the Hamiltonian,
q-dependent generalizations of them create the Gold-
stone bosons. For example, for £ = 3, g-dependent
generalizations of © 19 = (m;/a)S] and 6@ =
(m2/a)S; do not produce Goldstone bosons since
Hogy, o (TT1)%/3) =0, a = 1,2. The first nontrivial
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case is obtained from © M1 = (mg/a?)(Sy Sy
+a®S;) using the property mimams = 1. The g-
dependent generalization creating the Goldstone bosons
is the related form given in Eq. (44), Sec. IV.

The property H © ®1::pk-1) | (11 DEEY =0
(e.g., with k = 3, p1 = pa = 1 for the particular case just
being illustrated) is enough to ensure the gapless charac-
ter of the spectrum as ¢ — 0, and the resulting diffusive
power-law decay of the autocorrelation function.

VI. FINITE-SIZE SCALING AND
UNIVERSALITY

Although the Monte Carlo simulations of Secs. III and
IV detected a diffusive decay in the autocorrelation func-
tions for k > 2, they also indicate that our statistics
become noisy beyond times of the order of 100 steps. Of
course this situation could be improved simply by aver-
aging over many more histories, although this alternative
is prohibitive for our available computer time. We have
tried to enlarge the number of samples at the expense
of reducing the relaxation time tp but it turns out that
correlation effects between histories become important.
Integration or “smoothing” of numerical data may give
misleading results in some cases.

However, since any finite system asymptotically has
strictly an exponentially fast kinetics, the above difficul-
ties can be surmounted using smaller systems and finite-
size scaling arguments. On fairly general grounds, we
expect the autocorrelation function C(L,t) to be of scal-
ing form

C(L,¢)

%Z[(m(@m(t)) — (m)?],
l

+—9
Y (at/L7), (61)

Il

where 6 and z are critical exponents, and Y is a scaling
function. 6, z, and Y are expected to be universal over
all members of a given class, while ¢ and b are nonuni-
versal metric functions. Hence we may assume that the
relaxation time scales as L?, thus finite-size scaling tech-
niques allow in practice for both enlarging significantly
the number of histories ( time o< L) and reducing the
waiting time (o o< L*). We explored sizes in the range
12 < L < 72 waiting a time to, larger than the L-
dependent relaxation time of the full lattice, to allow the
system to reach steady state. The dynamical correlations
were measured and averaged over 108 different histories.

We chose to explore three particular invariant sub-
spaces, which were picked by specifying the initial con-
figuration. The initial configurations were (i) all empty
sites, (ii) the configurations obtained from the antiferro-
magnetic Néel state by reversing every sixth spin, (iii)
half the system in an all-empty state; the other half in
an antiferromagnetic state.

We now discuss the behavior in each of the subspaces
(i), (ii), and (iii).

(i) This is the least jammed subspace of all sub-
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spaces. We studied the cases £k = 2, 3, 4. On setting
z = 2,60 = 1/2, the data converge towards a universal
curve for each value of k as it is shown in Figs. 7(a)
and 7(b) for the cases kK = 3 and k = 4, respectively.
Moreover, by sliding the curves sideways and upward on
the log-log scale [choosing the metric factors @ and b in
Eq. (61)], all the data are seen to collapse onto a single
universal curve as can be observed in Fig. 8.

The scaling function can in fact be calculated analyt-
ically (solid curve in Fig. 8). This is because for € = ¢’
the dimer problem maps to the Heisenberg model, and
can be solved on a finite ring. Following the calculation
of Appendix B we find

_ - oo (1 — cos 2T
C(L,t) = 71 ;exp[ 26(1 cos — t| .

(62)

The term with | = 0 is excluded as it corresponds to
the uniform part, which is subtracted away in defining
C(L,t). In the scaling limit L — oo, t — oo with y =
et/L? held constant, we obtain
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IIIIII T T 1IIIII| T T IIIIII‘
0.1 -
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- m
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O'Ol_llull 1 111’_
0.001 0.1

FIG. 7. Evidence for the finite-size scaling hypothesis for
the autocorrelation function. The averages were taken over
108 histories for (a) k = 3 with sizes L = 6m, 2 < m < 9 and
for (b) k=4 with L=4m, 4 <m < 13.
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FIG. 8. Evidence for universality of k-mer kinetics from
finite-size scaling, for steady states reached from an initially
empty lattice. The data were averaged over 10° samples for
k = 2, L = 28 (circles), k = 3, L = 54 (triangles), and
k=4, L = 52 (squares); a and b are metric factors referred
to in the text. The solid line is the theoretical prediction for
the scaling function [Eq. (63) in the text].

CtYy~p (1-p)(et)" Y (y),
(63)

Y(y) =y? Z exp (—47m%y) .
10

The sum that appears in the definition of the scaling
function Y (y) in Eq.(63) is related to the Jacobi theta
function of the third kind [16].

(ii) This subspace differs from (i) in that the conserved
quantity (My, — Mjg) is nonzero, implying that the av-
erage site occupation depends on the sublattice the site
belongs to, i.e., the system is not translationally invari-
ant.

Nevertheless, as with (i), good data collapse is found on
choosing z = 2, 6 = % Thus the dynamics is diffusive
once again, confirming the results already obtained in
large systems (Fig. 5).

(iit) Like (i), this subspace is translationally invariant.
However, the dynamics seems to be quite different at
least over the range of sizes studied. Figure 9 exhibits a
particular evolution of the system starting from the ini-
tial state (iii) defined above. No collapse is found when
z =2,0 = § is used [Fig. 10(a)], while a rather good
collapse is obtained by trying z = %, 0= % [Fig. 10(b)].
We used to = 400 to generate the data shown in Figs.
10(a) and 10(b), but careful checks on several of the data
points show that neither increasing to to 3000 nor us-
ing different starting configurations makes a difference
to the result. The scaling behavior in this subspace con-
trasts with the diffusive behavior in (i) and (ii). We do
not have at present a clear understanding of this behav-
ior. A possibility is that there are strong corrections to
the diffusive scaling law in the range studied, and that
the asymptotic scaling form (61) would set in for large
enough sizes.

site

FIG. 9. Particular trimer evolution starting from a config-
uration in which half of the lattice is empty and the rest in an
antiferromagnetic state (lower central white region), referred
to as subspace (iii) in the text. Only updated spins are shown.
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FIG. 10. The autocorrelation function averaged over 10°
samples for k = 3 within subspace (iii) in the text. (a) Lack of
data collapse on choosing a dynamic critical exponent z = 2.
(b) Data collapse obtained with z = 1/2. Lattice widths are
L=12m,1<m<6.
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FIG. 11. Estimation of the diffusion constant D in the
steady state for k = 2, L = 30 and €'/e = 0.25,0.5,1 start-
ing from an all-empty lattice configuration and averaging over
10 histories. The solid lines are the asymptotic solutions of
Eq. (63) in the text, their slopes being 47% D log,, e.

Finally, the case of dimers offers again the possibility
to test our Monte Carlo calculations now combined with
the finite-size scaling hypothesis of Eq. (61). Simulations
have been performed to measure diffusion constants for
various €, € and p,, pg where P, are the average occu-
pation on the two sublattices & = A, B. On identifying
the metric factor a of Eq. (61) with the diffusion constant
and using the dimer scaling function (63), in all cases the
results fit very well with the exact result given in Eq. (32)
of Sec. III. This is shown in Fig. 11 (solid lines indicate
the asymptotic solutions).

VII. SUMMARY AND OUTLOOK

We have considered the nonequilibrium behavior of
stochastic systems involving processes of deposition and
evaporation of k-mers on a one-dimensional substrate.
Despite their apparent simplicity, these models exhibit a
complex set of partially and fully jammed states belong-
ing in turn to different subspaces disconnected by the
dynamics. For k > 2 cooperative effects associated with
the rule for deposition and evaporation induce a slow ki-
netics which can be detected by analyzing the power-law
decays of dynamical correlation functions. For k > 3
exact enumeration algorithms support the hypothesis of
proliferation of both fully and partially jammed steady
states whose number grows exponentially with the num-
ber of lattice sites, indicating a nonergodic behavior in
which the dynamics is partitioned in an equally expo-
nentially large number of subspaces, a quite uncommon
feature in systems without quenched disorder.

Starting from the master equation describing the ki-
netics of these processes, we have introduced a new class
of quantum-spin Hamiltonians associated with the corre-
sponding time evolution operators. The correspondence
between these two types of problems enabled us to ex-
ploit global rotational symmetries of the spin Hamilto-
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nian from which we derived a family of k — 1 indepen-
dent conservation laws and conjectured important conse-
quences for the asymptotic dynamical behavior. In the
monomer case, these global symmetries do not apply and
the kinetics is exponentially fast. For k& > 2 continuous
collective symmetries are always present and a slow dy-
namics can be inferred using the Goldstone theorem. The
removal of this symmetry may cause drastic effects in the
asymptotic dynamics, as was revealed by numerical sim-
ulations where the introduction of explicit particle diffu-
sion or hopping processes changed the decay from power
law to exponential.

The case & = 2 with equal deposition-evaporation
rates is special in that it can be reduced to the isotropic
Heisenberg ferromagnet and therefore an exact calcula-
tion of dynamical correlation functions showing diffusive
decay is possible. The general dimer problem with un-
equal rates can be analyzed in terms of spin-wave descrip-
tions, generalized particle diffusion and linear response
approaches. Each of these methods yielded a diffusive
dynamics also detected by Monte Carlo and finite-size
scaling techniques. The case of k¥ > 3 is more complex
to solve by analytical methods except on some almost
jammed subspaces. Nevertheless, Monte Carlo simula-
tions on large scales and finite-size scaling analysis es-
tablished again the existence of diffusive tails in the cor-
responding autocorrelation functions. Further, the data
collapse of Fig. 8 strongly suggests the universality hy-
pothesis of diffusive decay regardless of the value of k.
The one apparent exception [Fig. 10(b)] is not at present
understood.

In this work we have not investigated the behavior of
static correlation functions. Studies in that direction are
under consideration.

In view of the symmetry arguments discussed above,
generalizations of this problem to include deposition and
evaporation of ki, ks, ...,k, nearest-neighbor particles
at a time could probably exhibit slow kinetics as well,
provided that all k-mer sizes are chosen to be integer
multiples of a common number, so that the continuous
symmetry expressed in Eq. (53) remains unaltered in the
generalized evolution operator. Such a system offers in
addition the possibility of being numerically tractable on
a linear chain.

Most of the ideas developed in this work can be ex-
tended to the general k-mer problem in higher dimen-
sions. The case k = 2 with equal deposition-evaporation
rates on the square lattice (and other bipartite lattices)
can be mapped again to the Heisenberg ferromagnet.
Furthermore, deposition and evaporation of lattice an-
imals could also be considered within the formalism of
Sec. V. For instance, square tetramers on a square sub-
strate and elementary trimers on the sites of a triangular
lattice have both collective continuous symmetries, and
therefore at least one of the conditions for low lying Gold-
stone modes is fulfilled. However, trimers on the sites of
a honeycomb lattice break this symmetry and one could
speculate on the possibility of a fast kinetics. In general,
the interplay between the animal shape and the underly-
ing lattice structure is indeed a crucial feature to derive
conclusions about the asymptotic dynamics.
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APPENDIX A: COVERAGE IN STEADY STATE
FOR DIMERS

In the original dimer system, the coverage in steady
state is defined as ©9 = ((Na) + (Np))/L where
(Na4), (Ng) are the average number of particles in equi-
librium on the even and odd sites, respectively. In the -
particle (sublattice-mapped) representation this becomes

00 =1 () + (5 - (Fa) ) )

3 (1 D)

where (T4), (I's) are the corresponding average sublat-
tice magnetizations.
It is convenient to associate an energy

E(C) = hNp(C) — hNA(C), (A2)
to every configuration C'. Corresponding Boltzmann
weights W (C) = e"E(C)/T can then be attached to con-

figurations. Comparing these weights with those corre-
sponding to the steady state in Eq. (19), we find

exp (2h/T) = ¢/¢€ . (A3)

We consider the all-empty state in the original system.
This corresponds to N 4 =0, Ng=L /2 in the sublattice
representation. Since N4 + Ng is conserved we restrict
consideration to the sector with L/2 7 particles in it. The
constraint Nq + Ng = L/2 can be enforced through a

chemical potential . The corresponding grand partition
function is

Z=Y) explu - E))/T =
C

(A1)

()Y (28)"?, (A4)

where

2amt 4 o (121)
(7). o

Zp =1 + exp T
The constraint (Na) + (Ng) = L/2 yields u = 0,
therefore we obtain
- L/2 ~ L/2
(Na)= 2t (Ng)=——t

1+exp(h/T) "
(A6)

1+exp(—h/T) ’
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Thus, recalling (A1) and (A3), the coverage in steady
state with zero total magnetization is

(A7)

6 — 1
°71 + e’

APPENDIX B: CALCULATION OF
AUTOCORRELATION FUNCTION
FOR DIMERS (e = ¢)

Since the particle occupation number n; of site i is
related to the spin by n; = (14+77)/2, the autocorrelation
function C; ;(t) = (n; (t) n; (0)) — (n;) (n;) satisfies

Cij () = 1 (77 (®) 77 (0)) — () (7f)].  (BY)

Then if | k) is the eigenvector of H with eigenvalue e,
and |G, ) is the ground state in the r-down spin sector,
the correlation function in this sector is

Cig (8) = 7 S/ (Gr 77 | k) (kI 751 Gy ) exp (—ext)

3
(B2)

where the prime on the sum indicates that |k) differs
from |G, ).

The matrix elements have a selection rule arising
from the fact that H commutes with the total spin

= 1 3. #, thus (G,|77|k) = O unless the total
spm of ]k) and |G, ) differ by 0 or 1. But |G,) =
B,.(T7)"|Go), where B, is a normalization factor,
T- =3, 7, and|Go) is the all-spin-up state so | G, )
has total spin T = L/2. Further, |k) # |G,) so the
states | k) which contribute have T = L/2 — 1. The state
|Go) (with no down spins) has T'= L/2, T% = L/2.

T-|Go) is the one-down-spin state having T' = L/2.
The other (L—1) one-down-spin states having T = L/2 —
1 are simple spin-wave states |g) = >, wi(q) 7 |Go)
with ¢;(q) = L~1/2 exp(igl) and energies ¢, = 2¢ (1 —
cosq).

The states |k) have T = L/2 — 1 but they
have r-down spins. They are related to |g) by
|k) = A.(T~)""!|g). The normalization factor A,
is given by products of angular momentum factors
VT +T#)(T—-T7+1) withT = L/2 —1 and T? run-
ning from 7" downwards. Thus,

(L—=r—1)!
p— e —— B
A=\T-ir=1 (B3)
Similarly, the normalization factor in |G, ) is
(L=
Br=y " (B4)

hence
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(Grl7i k)

=" (@) Ar Br (Go | (TH)" 7 (T7) "' 77 | Go),
l

~eil@ [ TS — e VFF), @)

where the last step involves the limit r — oo, L — oo
with /L fixed at the particle density p’. Thus

Cij(t)=p (1-7")

x ) exp[—2e(1—cosq)t] i(q) ¥}(q). (B6)
g#0

The particular case j = i (autocorrelation function) is
therefore

Cii(t) =p (1—p ) exp(—2¢t) Ip(2et),
(B7)

Io(z)z2—17;/ exp(z cosf)db.

An alternative procedure for deriving these results for
large L, r is to exploit the transformation of spin opera-
tors under rotations as follows. |G, ) is an eigenstate of
H , and of the square and z component of the total spin
T. For large L, r the “vector” T becomes classical, in
the sense that its (normalized) components have commu-
tators which vanish like 1/L. Thus, if R is the operator
which rotates all spins from the z direction by an angle
0 (about the y axis, say), where cosf =1 —2r/L, we
have

Gr) = R|Go). (B9)

Thus
(k|77 |Gr)=(k|RR™' 7} R|Go)
= (k| (77 cos6 + 7¥ sinf) |Go), (BY)
where ITc) = R7!|k) is again an eigenstate of H , differ-
ent from |Go) = R™!|G, ), because [H, R] = 0. Thus,
using 7° = (7t +77), 71| Go) = 0, 77| Go) = | Go ),

and the orthogonality of different eigenstates of H, it
follows that

(k|77 |Gr) = (sin6)(k|7; | Go)
sin

=ﬂf’zexp<—z'qj><%|q>, (B10)
q

where | g) is the single spin wave eigenstate with energy
€q = €(1 — cosq) . Inserting (B10) into (B2), and using
orthonormality ((k|q) = 63 ,) and sin2@ = 4r (1 —
r/LY/L = 4p (1 — p’), the results for C; ;(t), C;i(t) in
the limit L — oo, follow immediately.
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APPENDIX C: THE NUMBER I,(k,L) OF
FULLY JAMMED STATES

The fully jammed states have no more than k —1 suc-
cessive parallel spins. In an open chain of L sites their
number is

k—1
Ik, L) =Y M*(L), (C1)
a=1

where M*(L) is the number of fully jammed states with
the last o spins parallel.

By adding an extra spin parallel or antiparallel to the
last one,

M(L+1)=M>YL) , k—1>a>1, (C2)
MYL+1)= kz_:l Me(L). (C3)
a=1
Furthermore,
e ={3 271 pi
(B2) implies
M*(L)=MYL-a+1), k—1>a>1. (C6)

So all the other equations can be written in terms of
MY(L). Or, equivalently, in terms of I(k, L) since, by
comparison of (C1) with (C3),
MY (L) = Ii(k,L —1). (CT)
The resulting equations take the following form in
terms of

Fu(k) = 3 Ii(k, L) (08)
[which takes out the factor 2 from (C4)]:
k=1
Fy(k) =Y Fr_;(k), (C9)
j=1
with
Fo(k)=1. (C10)
Fr(k)=0 , —(k—2)<L<O0. (C11)

For the case k = 2, Fr(k) =1, L > 0, so I1(2,L) = 2.
For the case k = 3, (C9)—(C11) are the defining equations
of Fibonacci numbers Fy,, so I;(3,L) = 2FL(3) =2FL.
For higher k, Fr (k) are the “generalized Fibonacci num-
bers” defined by (C9)-(C11), general k.

By solving the linear difference equation (C9) it can
be seen that in general I;(k, L) = 2 F (k) is at large L
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proportional to AL where X is the largest root of

Ne =g \k=1 _ 1, (C12)

APPENDIX D: RANDOM WALK OF SPIN FLIPS
ON THE FULLY JAMMED TRIMER
ANTIFERROMAGNETIC STATE

The fully jammed antiferromagnetic state of the trimer
system is [p) = (11)¥/2 =1 | 1] .... Taking the origin
n = 0 at an up spin state, we consider an initial state
|ao) = 0,-0|¢¥). This state is a three-down-spin group
centered at the origin, separating two antiferromagnetic
domains of opposite registration. Repeated application
of the trimer Hamiltonian produces a sequence of states
wol@am ), |bm ) ... as follows:

lao) =B|bo),
|0) =4 (lao) + la1) + |a1)t),

(D1)
lam) =& (|bm) + |bp-1)) , m>1,
lbm) =4&" (lam) + |am+1)) , m>1,
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where

&(H)=€(H+2¢)71,
&(Hy=¢ (H+2¢)",
(D2)
BH) =€ (H+e)™,
AH)=¢ (H+3€¢)".

The generalized states | am ), | b} have a group of three
down spins or three up spins, respectively, which are
2m lattice spacings to the left of the origin. The “dag-
ger” symbol in |a;)' represents reflection in the ori-
gin. The time evolution is thus a generalized random
walk, in this case of the “three-groups” on the anti-
ferromagnetic background. Eigensolutions of the form
lam) x aexp(i2mgq), |bm) o« bexp(i2mg) yield the
secular equation

(2 cosq)? &(E)&' (E)=1. (D3)
It follows that the eigenenergy satisfies
E?2 —2E;(e+¢€) + 4ee’ sin?¢=0. (D4)
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